Finding roots of $\sin x+x=0$ and $\sin x-x=0$

Anton Shterenlikht

Mech Eng Dept, The University of Bristol, Bristol BS8 1TR, UK

The above equations have infinite number of roots. I want to find the first n roots. For each root, the minus root is also a root. Also, a conjugate of each root is also a root. I need to use roots with positive real part to ensure rapid decay of the solutions with x_{1}. I will split the complex equations into a system of 2 real equations and then use a standard library to solve it. In the following $j=\sqrt{-1}$.
$x=\operatorname{Re} x+j \operatorname{Im} x . \quad$ Let's denote $\operatorname{Re} x=R, \operatorname{Im} x=I . \quad$ Use the identity $\sin (a+b)=\sin a \cos b$ $+\cos a \sin b$, so that

$$
\sin x=\sin (R+j I)=\sin R \cos j I+\cos R \sin j I
$$

Now use $\cos a=\frac{1}{2}(\exp j a+\exp (-j a)), \sin a=\frac{1}{2 j}(\exp j a-\exp (-j a))$:

$$
\begin{gathered}
\cos j I=\frac{1}{2}(\exp (j j I)+\exp (-j j I)) \quad ; \sin j I=\frac{1}{2 j}(\exp (j j I)-\exp (-j j I)) \\
\cos j I=\frac{1}{2}(\exp (-I)+\exp I) \quad ; \sin j I=\frac{1}{2 j}(\exp (-I)-\exp I)
\end{gathered}
$$

so

$$
\sin x=\sin R \frac{1}{2}(\exp (-I)+\exp I)+\cos R \frac{1}{2 j}(\exp (-I)-\exp I)
$$

Fist $\sin x+x=0$.

$$
\sin x+x=\sin R \frac{1}{2}(\exp (-I)+\exp I)+\cos R \frac{1}{2 j}(\exp (-I)-\exp I)+R+j I=0
$$

multiply by $2 j$ and split the real and imaginary parts into two real equations:

$$
\begin{gathered}
j \sin R(\exp (-I)+\exp I)+\cos R(\exp (-I)-\exp I)+2 j R-2 I=0 \\
\\
\sin R(\exp (-I)+\exp I)+2 R=0 \\
\\
\cos R(\exp (-I)-\exp I)-2 I=0
\end{gathered}
$$

Now $\sin x-x=0$.

$$
\sin x-x=\sin R \frac{1}{2}(\exp (-I)+\exp I)+\cos R \frac{1}{2 j}(\exp (-I)-\exp I)-R-j I=0
$$

multiply by $2 j$ and split the real and imaginary parts into two real equations:

$$
\begin{gathered}
j \sin R(\exp (-I)+\exp I)+\cos R(\exp (-I)-\exp I)-2 j R+2 I=0 \\
\\
\sin R(\exp (-I)+\exp I)-2 R=0 \\
\\
\cos R(\exp (-I)-\exp I)+2 I=0
\end{gathered}
$$

