
Forward and inverse solutions for 2D semi-in�nite

strip with self-equilibrated end loading

Anton Shterenlikht, Hokyeom Kim

Mech Eng Dept, The University of Bristol, BS8 1TR, UK

28th July 2016

1 Basics

The method was �rst published in 2000 [1]. The method was applied to the
measurement of res. stress in aluminium in [2, 3, 4].

Here more explicit details of the forward and inverse solutions are shown.
It's easy to check that the following stress functions:

f = Ce�
x1=c
�
� cos

x2
c

+

x2
c

sin

x2
c

�
(1)

and

g = Ce��x1=c
�
 sin

�x2
c

+
�x2
c

cos
�x2
c

�
(2)

are solutions to the biharmonic equation

f;iijj = 0; g;iijj = 0 (3)

(1) is an even function of x2 and (2) is an odd function of x2. x1 is along
the beam, with x1 = 0 being the boundary. 2c is the width of the beam.
x2 = 0 is the beam centre and neutral line, i.e. �22(x2 = 0) = 0. But generally
u2(x2 = 0) 6= 0! The top and bottom surfaces of the beam, i.e. x2 = �c are
free, i.e. �22 = �12 = 0 there, see Fig. 1.

1

c

c

0

x
2

x

Figure 1: Schematic diagram of the semi-in�nite strip.

or
From [5, pp. 61-62] these boundary conditions are satis�ed if

f =
@f

@x2
= 0 on x2 = �c (4)

1

because from these follows:

@2f

@x21
� �22 = 0; �

@2f

@x1@x2
� �12 = 0 on x2 = �c (5)

Note that
@f

@x1
� const � f (6)

For g the BC are the same:

g =
@g

@x2
= 0 on x2 = �c (7)

because from these follows:

@2g

@x21
� �22 = 0; �

@2g

@x1@x2
� �12 = 0 on x2 = �c (8)

In addition for each x1 = const, including x1 = 0, the total force along x1
and the total moment are zero:Z +c

�c

�11dx2 = 0 ;

Z +c

�c

�11x2dx2 = 0 (9)

Satisfying the BC one obtains:

sin 2
 + 2
 = 0 (10)

and
� = �
 tan
 (11)

for the even function, and
sin 2�� 2� = 0 (12)

and
 = ��= tan� (13)

for the odd function.
Since both f and g satisfy the biharmonic equation, then their individual

real and imaginary parts satisfy it as well. So using all
 and � roots, the stress
function for the case of loading the x1 = 0 boundary by an arbitrary normal
and shear stresses (subject to constraint that the total load in x1 is zero) will
be written as in�nite series:

� =

1X
i=1

aiRef
i + biImf

i + ciReg
i + diImg

i (14)

The roots for
 and � are complex congugate and for each root, the minus
root is also root. We are only looking at roots with positive real part, because
these are going to decay with x1. We neglect the conjugates because these would
just introduce a factor of 2 into (14).

The �rst 3 roots for
; � are:

2

! Using SLATEC version: 4.1

! Using DNSQ: http://netlib.org/slatec/src/dnsq.f

! xtol= 1.7763568394002505E-014

complex(kind=rk), parameter :: gamma(200) = (/ &

(2.1061961152453303E+00_rk , 1.1253643058009302E+00_rk) , & ! 1

(5.3562686986396306E+00_rk , 1.5515743729126248E+00_rk) , & ! 2

(8.5366824265759149E+00_rk , 1.7755436735110401E+00_rk) , & ! 3

complex(kind=rk), parameter :: phi(200) = (/ &

(3.7488381388881926E+00_rk , 1.3843391414936608E+00_rk) , & ! 1

(6.9499798569882323E+00_rk , 1.6761049424267525E+00_rk) , & ! 2

(1.0119258853915010E+01_rk , 1.8583838398762496E+00_rk) , & ! 3

Use roots8.f90 to recalculate and to see the error in each solution.

2 Plane stress, tangential disp. �elds

Using Hooke's law for plane stress, �33 = 0:

�11 =
1

E
(�11 � ��22) ; �22 =

1

E
(�22 � ��11) ; �12 =

1 + �

E
�12 (15)

and small strain theory:

�11 = u1;1 ; �22 = u2;2 ; �12 = 1=2(u1;2 + u2;1) (16)

the displacements are:

u1 =

Z
�11dx1 + u01 (17)

u2 =

Z
�22dx2 + u02 (18)

where u01; u
0
2 are known displacements at some point.

2.1 Integration limits along x1 and u
0

1

The BC lead to u1(x1 = +1) = 0. Hence u01 = 0 and integration should be
from +1 to x1:

u1 =

Z x1

+1

�11dx1 (19)

2.2 Integration limits along x2 and u
0

2

u02 is the displacement of point (x1; 0) relative to point (+1; 0) along x2. This
can be achieved by integrating along path A in Fig. 2.2. Then integration is
carried out along path B (Fig. 2.2), from x2 = 0.

From (16)(c):

u2;1 = 2�12 � u1;2 (20)

So that u02 can be calculated as follows:

3

(inf,0)1
2 A

B

(x1,x2)

(x1,0)

Figure 2: Integration path for u2.

u02 =

Z x1

+1

2�12dx1

����
x2=0

�

Z x1

+1

u1;2dx1

����
x2=0

(21)

so that (18) can be rewritten as

u2 =

Z x1

+1

2�12dx1

����
x2=0

�

Z x1

+1

u1;2dx1

����
x2=0

+

Z x2

0

�22dx2 (22)

or using (19):

u2 =

Z x1

+1

2�12dx1

����
x2=0

�

Z x1

+1

Z x1

+1

�11;2dx1dx1

����
x2=0

+

Z x2

0

�22dx2 (23)

Let's express the �rst two integrals in 23 via �. From (15):

�12 = �
1 + �

E
�;12 (24)

�11;2 =
1

E
(�11;2 � ��22;2) =

1

E
(�;222 � ��;112) (25)

where from (14)

�;11 =

1X
i=1

aiRef
i
;11 + biImf

i
;11 + ciReg

i
;11 + diImg

i
;11 (26)

�;22 =

1X
i=1

aiRef
i
;22 + biImf

i
;22 + ciReg

i
;22 + diImg

i
;22 (27)

�;12 =

1X
i=1

aiRef
i
;12 + biImf

i
;12 + ciReg

i
;12 + diImg

i
;12 (28)

Now from (1)-(2), assuming C = c2 (dropping subscript i for brevity):

f;11 =
2 exp(�

x1
c

)
�
� cos

x2
c

+

x2
c

sin

x2
c

�
(29)

f;22 =
2 exp(�

x1
c

)
�
(2� �) cos

x2
c
�

x2
c

sin

x2
c

�
(30)

f;222 =

3

c
exp(�

x1
c

)
�
(�3 + �) sin

x2
c
�

x2
c

cos

x2
c

�
(31)

f;12 =
2 exp(�

x1
c

)
�
(� � 1) sin

x2
c
�

x2
c

cos

x2
c

�
(32)

4

f;112 = �

3

c
exp(�

x1
c

)
�
(� � 1) sin

x2
c
�

x2
c

cos

x2
c

�
(33)

g;11 = �2 exp(�
�x1
c

)

�
 sin

�x2
c

+
�x2
c

cos
�x2
c

�
(34)

g;22 = �2 exp(�
�x1
c

)

�
(�2�) sin

�x2
c

�
�x2
c

cos
�x2
c

�
(35)

g;222 =
�3

c
exp(�

�x1
c

)

�
(�3�) cos

�x2
c

+
�x2
c

sin
�x2
c

�
(36)

g;12 = �2 exp(�
�x1
c

)

�
(�1�) cos

�x2
c

+
�x2
c

sin
�x2
c

�
(37)

g;112 = �
�3

c
exp(�

�x1
c

)

�
(�1�) cos

�x2
c

+
�x2
c

sin
�x2
c

�
(38)

So f;12(x2 = 0) = 0 and

g;12(x2 = 0) = �2 exp(�
�x1
c

)(�1�) = �(1 +)�2 exp(�
�x1
c

) (39)

Let's introduce another function, q(x1), for g;12(x2 = 0):

q(x1) = �(1 +)�2 exp(�
�x1
c

) (40)

so from (23), (24):

Z x1

+1

2�12dx1

����
x2=0

= �
2(1 + �)

E

1X
i=1

ci

Z x1

+1

Req(x1)dx1 + di

Z x1

+1

Imq(x1)dx1

(41)
or, changing the limits of integration:

Z x1

+1

2�12dx1

����
x2=0

=
2(1 + �)

E

1X
i=1

ci

Z +1

x1

Req(x1)dx1 + di

Z +1

x1

Imq(x1)dx1

(42)
For the second integral in (23) the necessary derivatives are: f;222(x2 = 0) =

f;112(x2 = 0) = 0 and

g;222(x2 = 0) =
�3

c
exp(�

�x1
c

)(�3�) (43)

g;112(x2 = 0) =
�3

c
exp(�

�x1
c

)(1 +) (44)

so from (25):

�11;2(x2 = 0) =
1

E

1X
i=1

ciRe(g
i
;222 � �gi;112) + diIm(gi;222 � �gi;112)

��
x2=0

(45)

5

and

�

Z x1

+1

Z x1

+1

�11;2dx1dx1

����
x2=0

= �
1

E

1X
i=1

ciRe

Z x1

+1

Z x1

+1

(gi;222 � �gi;112)dx1dx1

�����
x2=0

� diIm

Z x1

+1

Z x1

+1

(gi;222 � �gi;112)dx1dx1

����
x2=0

(46)

or, (1) changing the integration limits twice and keeping the sign the same,
and (2) moving the minus inside the integrand:

�

Z x1

+1

Z x1

+1

�11;2dx1dx1

����
x2=0

=
1

E

1X
i=1

ciRe

Z +1

x1

Z +1

x1

(�gi;112 � gi;222)dx1dx1

�����
x2=0

+ diIm

Z +1

x1

Z +1

x1

(�gi;112 � gi;222)dx1dx1

����
x2=0

(47)

where from (43), (44):

�gi;112 � gi;222
��
x2=0

=
�3

c
exp(�

�x1
c

)(�(1 +) + 3 +) (48)

c can be moved from (48) to (47):

�

Z x1

+1

Z x1

+1

�11;2dx1dx1

����
x2=0

=
1

cE

1X
i=1

ciRe

Z +1

x1

Z +1

x1

z(x1)dx1dx1

+ diIm

Z +1

x1

Z +1

x1

z(x1)dx1dx1 (49)

where

z(x1) = �3 exp(�
�x1
c

)(�(1 +) + 3 +) (50)

Now from (23):

u2 =

Z x2

0

�22dx2 + s(x1) (51)

where s(x1) is the function giving the motion of points initially on x2 = 0,
i.e. the central line, along x2:

6

s(x1) =

Z x1

+1

2�12dx1

����
x2=0

�

Z x1

+1

Z x1

+1

�11;2dx1dx1

����
x2=0

(52)

Note that from calculations, for non-symm. loading, s(x1) is quite large.
Neglecting this correction in inverse solution can cause large errors.

2.3 Full expressions for displacements

From (15), (19) and (51):

u1 =
1

E

Z x1

+1

(�11 � ��22)dx1 (53)

u2 =
1

E

Z x2

0

(�22 � ��11)dx2 + s(x1) (54)

or

u1 =
1

E

Z x1

+1

(�;22 � ��;11)dx1 (55)

u2 =
1

E

Z x2

0

(�;11 � ��;22)dx2 + s(x1) (56)

where

(�;22 � ��;11) =

1X
i=1

aiRe(f
i
;22 � �f i;11) + biIm(f i;22 � �f i;11)

+ ciRe(g
i
;22 � �gi;11) + diIm(gi;22 � �gi;11) (57)

(�;11 � ��;22) =

1X
i=1

aiRe(f
i
;11 � �f i;22) + biIm(f i;11 � �f i;22)

+ ciRe(g
i
;11 � �gi;22) + diIm(gi;11 � �gi;22) (58)

or

Eu1 =

1X
i=1

ai

Z x1

+1

Re(f i;22 � �f i;11)dx1 + bi

Z x1

+1

Im(f i;22 � �f i;11)dx1

+ ci

Z x1

+1

Re(gi;22 � �gi;11)dx1 + di

Z x1

+1

Im(gi;22 � �gi;11)dx1 (59)

Eu2 =

1X
i=1

ai

Z x2

0

Re(f i;11 � �f i;22)dx2 + bi

Z x2

0

Im(f i;11 � �f i;22)dx2

+ ci

Z x2

0

Re(gi;11 � �gi;22)dx2 + di

Z x2

0

Im(gi;11 � �gi;22)dx2 + Es(x1) (60)

7

(x1,x2)

(X1,X2)

(0,0)

(u1,u2)

v1 = (cos -1)x1 - sin x2

v2 = sin x1 + (cos -1)x2

Figure 3: Schematic of rigid body motion. Displacements due to rigid body
motion can be expressed as translation, uT and that due to rotation by angle
�, uR.

where from (29)-(37):

f i;22 � �f i;11 =
2 exp(�

x1
c

)
h
(2� � � ��) cos

x2
c
� (1 + �)

x2
c

sin

x2
c

i
(61)

f i;11 � �f i;22 =
2 exp(�

x1
c

)
h
(� � �(2� �)) cos

x2
c

+ (1 + �)

x2
c

sin

x2
c

i
(62)

gi;22 � �gi;11 = �2 exp(�
�x1
c

)

�
(�2� � �) sin

�x2
c

� (1 + �)
�x2
c

cos
�x2
c

�
(63)

gi;11 � �gi;22 = �2 exp(�
�x1
c

)

�
(+ �(2 +)) sin

�x2
c

+ (1 + �)
�x2
c

cos
�x2
c

�
(64)

2.4 Rigid body motion

Displacement experiments might su�er from rigid body motion. This section
analysiss in-plane rigid body motion and addds its contribution to the measured
displacements at all points.

Rigid body motion creates displacement uM at all points:

�
uM1
uM2

�
=

�
uT1
uT2

�
+

�
uR1
uR2

�
(65)

where uT is due to in-plane translation, and where uR is due to in-plane rotation
by angle �. uR can found as the di�erence between coordinates of point P after
rotation, xR, and its original coordinates (before rotation), x:

8

�
uR1
uR2

�
=

�
xR1 � x1
xR1 � x2

�
(66)

where�
xR1
xR2

�
=

�
cos� � sin�
sin� cos�

��
x1
x2

�
=

�
cos�x1 � sin�x2
sin�x1 + cos�x2

�
(67)

Substituting (67), (66) into (65):

�
uM1
uM2

�
=

�
uT1 + (cos�� 1)x1 � sin�x2
uT2 + sin�x1 + (cos�� 1)x2

�
(68)

Displacements due to rigid body motion are added to (55) and (56):

u1 =
1

E

�Z x1

+1

(�;22 � ��;11)dx1

�
+ uM1 (69)

u2 =
1

E

�Z x2

0

(�;11 � ��;22)dx2 + s(x1)

�
+ uM2 (70)

or from (59) - (60):

Eu1 =

1X
i=1

ai

Z x1

+1

Re(f i;22 � �f i;11)dx1 + bi

Z x1

+1

Im(f i;22 � �f i;11)dx1

+ ci

Z x1

+1

Re(gi;22 � �gi;11)dx1 + di

Z x1

+1

Im(gi;22 � �gi;11)dx1

+ E(uT1 + (cos�� 1)x1 � sin�x2) (71)

Eu2 =

1X
i=1

ai

Z x2

0

Re(f i;11 � �f i;22)dx2 + bi

Z x2

0

Im(f i;11 � �f i;22)dx2

+ ci

Z x2

0

Re(gi;11 � �gi;22)dx2 + di

Z x2

0

Im(gi;11 � �gi;22)dx2 + Es(x1)

+ E(uT2 + sin�x1 + (cos�� 1)x2) (72)

Now we really have to unwrap s(x1) to separate terms with di�erent series
expansion coe�cients. From (42), (49), (52):

Es(x1) = 2(1 + �)

1X
i=1

ci

Z +1

x1

Req(x1)dx1 + di

Z +1

x1

Imq(x1)dx1

+
1

c

1X
i=1

ci

Z +1

x1

Z +1

x1

Rez(x1)dx1dx1

+ di

Z +1

x1

Z +1

x1

Imz(x1)dx1dx1 (73)

9

or grouping together terms with the same series expansion coe�cients:

Es(x1) =

1X
i=1

ci

�
2(1 + �)

Z +1

x1

Req(x1)dx1 +
1

c

Z +1

x1

Z +1

x1

Rez(x1)dx1dx1

�

+ di

�
2(1 + �)

Z +1

x1

Imq(x1)dx1 +
1

c

Z +1

x1

Z +1

x1

Imz(x1)dx1dx1

�
(74)

so that (72) can be rewritten as:

Eu2 =

1X
i=1

ai

Z x2

0

Re(f i;11 � �f i;22)dx2 + bi

Z x2

0

Im(f i;11 � �f i;22)dx2

+ci

�Z x2

0

Re(gi;11 � �gi;22)dx2 + 2(1 + �)

Z +1

x1

Req(x1)dx1 +
1

c

Z +1

x1

Z +1

x1

Rez(x1)dx1dx1

�

+di

�Z x2

0

Im(gi;11 � �gi;22)dx2 + 2(1 + �)

Z +1

x1

Imq(x1)dx1 +
1

c

Z +1

x1

Z +1

x1

Imz(x1)dx1dx1

�
+ E(uT2 + sin�x1 + (cos�� 1)x2) (75)

3 Stress

�11 =

NX
i=1

aiRef;22 + biImf;22 + ciReg;22 + diImg;22 (76)

�22 =

NX
i=1

aiRef;11 + biImf;11 + ciReg;11 + diImg;11 (77)

�12 =

NX
i=1

�aiRef;12 � biImf;12 � ciReg;12 � diImg;12 (78)

For stress on the boundary set x1 = 0 in (29)-(37).

4 Forward problem

By setting ai; bi; ci; di the problem is fully constrained. Stresses are calculated
immediately from (76){(78) and displacements from (59), (60).

One can set all ai and bi at random. Since these relate to f , these coe�ecients
set the symmetric stress �elds which are always in momentum equilibrium.

However, one cannot set all ci and di at random, because this will violate
the momentum equlibrium: Z c

�c

�11x2dx2 = 0 (79)

or, using (76): Z c

�c

NX
i=1

ciReg;22 + diImg;22

!
x2dx2 = 0 (80)

10

Assuming one sets all ci; i = 1; : : : N , and all but last di, i.e. di; i = 1; : : : N�
1, then dN is found as follows:

NX
i=1

ci

Z c

�c

Reg;22x2dx2 +

N�1X
i=1

di

Z c

�c

Img;22x2dx2 = �dN

Z c

�c

Img;22x2dx2 (81)

Note that all integrals are very small. dN is found by a division of a small
numerator over a small denominator. This might cause loss of precision. Care
should be taken, perhaps a check, to make sure (79) holds numerically.

5 Units

From (5) and (8) the units of f; g; � is force. Let's assume that the unit of force
is N and the unit of length is mm. One must use the same units for c as for
coordinates xi. In this case, and because
; �; � and are dimensionless, the
units C are N. The units of (61)-(64) are MPa. The integrals in (59)-(60) are
thus in MPa mm. Therefore ai; bi; ci; di are dimensionless. The units for E must
be MPa. Stress will be in MPa as well.

6 Integration limits and constants

The limits in (59), (60) could be swapped, with the sign changed, if the library
used for calculation requires the lower limit be smaller than the upper limit.

The tests show that QUADPACK [6], at least DQAGSE and DQNG, cor-
rectly calculate integrals where the upper limit is less than the lower limit.
However, it's easier to change the limits to make sure that the lower is always
smaller than the upper and not to worry about this potential issue.

7 Inverse problem

Now assuming we know u1; u2, let's �nd �.

7.1 Displacement of the centre line (x2 = 0)

Since we are not guaranteed to have any data points with x2 = 0, we need to
interpolate to calculate u2(x2 = 0). I use here DTENSBS sublibrary in CMLIB

package.

7.2 Matrix form

Let's rewrite (71)-(72) in matrix form. The notation is changed to match La-
pack. Let's assume we collect data from p points. We have 2 displacement
values per point. So in total we have M = 2p displacement values. We arrange
them in a vector B as follows:

11

B = E

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

u11
u21
...
up1

u12
u22
...
up2

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;
M�1

(82)

where the subscript denotes coordinate (1 or 2) and the superscript denotes
the node number (1; 2; : : : p). Note that the vertical motion of the central line
is subtracted from all u2.

The upper series limit is capped at N . There are 4N unknowns ai; bi; ci; di.
These are put into a vector, with factors
2 and �2. The are also 4 rigid body
unknowns - uT1 , u

T
2 , cos�� 1 and sin�. Note that although there are only 3 in-

plane rigid body degrees of freedom, four unknowns are required for expressing
these in a matrix equation:

x =

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

a1(Re
1)
2

b1(Re
1)
2

c1(Re�1)
2

d1(Re�1)
2

...
aN (Re
N)

2

bN (Re
N)
2

cN (Re�N)
2

dN (Re�N)
2

EuT1
EuT2

E(cos�� 1)
E sin�

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

4(N+1)�1

(83)

Note that we included certain parameters in the vector of unknowns, to make
the matrix better balanced:

A =

2
6666666666664

A1
1 B1

1 C1
1 D1

1 � � � A1
N

B1
N

C1
N

D1
N

1 0 x11 �x12
A2
1 B2

1 C2
1 D2

1 � � � A2
N

B2
N

C2
N

D2
N

1 0 x21 �x22
: :
Ap
1 Bp

1 Cp
1 Dp

1 � � � Ap
N

Bp
N

Cp
N

Dp
N

1 0 xp1 �xp2

E1
1 F 1

1 G1
1 H1

1 � � � E1
N

F 1
N

G1
N

H1
N

0 1 x12 x11
E2
1 F 2

1 G2
1 H2

1 � � � E2
N

F 2
N

G2
N

H2
N

0 1 x22 x21
: :
Ep
1 F p

1 Gp
1 Hp

1 � � � Ep
N

F p
N

Gp
N

Hp
N

0 1 xp2 xp1

3
7777777777775
M�4(N+1)

(84)

12

where x1 and x2 are the coordinates, the subscript in A;B;C;D denotes the
number of the series expansion term, the superscript is the node number (1; 2; : : : p)
and all coe�cients are as in (59)-(60):

Aj
i = �

1

(Re
i)2

Z +1

xj
1

Re(f i;22��f
i
;11)dx1 Bj

i = �
1

(Re
i)2

Z +1

xj
1

Im(f i;22��f
i
;11)dx1

(85)

Cj
i = �

1

(Re�i)2

Z +1

xj
1

Re(gi;22��g
i
;11)dx1 Dj

i = �
1

(Re�i)2

Z +1

xj
1

Im(gi;22��g
i
;11)dx1

(86)

Ej
i =

1

(Re
i)2

Z xj
2

0

Re(f i;11��f
i
;22)dx2 F j

i =
1

(Re
i)2

Z xj
2

0

Im(f i;11��f
i
;22)dx2

(87)

Gj
i =

1

(Re�i)2

(Z xj
2

0

Re(gi;11 � �gi;22)dx2

+ 2(1 + �)

Z +1

x1

Req(x1)dx1 +
1

c

Z +1

x1

Z +1

x1

Rez(x1)dx1dx1

�
(88)

Hj
i =

1

(Re�i)2

(Z xj
2

0

Im(gi;11 � �gi;22)dx2

+2(1 + �)

Z +1

x1

Imq(x1)dx1 +
1

c

Z +1

x1

Z +1

x1

Imz(x1)dx1dx1

�
(89)

The problem can be solved in standard LLS form:

min
x

jj Ax - B jj2 (90)

However, this is typically an ill-conditioned problem, and some stabilization
is usually required. One can use truncated SVD or Tikhonov regularization [7].
Both techniques are available in Lapack.

If matrix A is M � 4(N + 1);M > 4(N + 1), and of full rank, then the
eigenvalues of A are

s1 � s2 � : : : � s4(N+1) (91)

By setting the limit, r, on how small an eigenvalue can be, SVD can be
truncated, i.e. set all si = 0 if si < rs1. This makes A rank de�cient. In this
case we �nd the minimum norm solution, i.e. in addition to (90) we �nd

min
x

jj x jj2 (92)

The solution of (90) together with (92) is unique.

13

Finally, if it is clear that the solution is symmetric, then it's best to set all
ci; di to zero. Similarly, if the solution is clearly anti-symmetric, it's best to set
all ai; bi to zero.

After x is found, ai : : : di, and u
T
1 , u

T
2 and � are extracted from (83).

7.3 Symmetric problems

For pure symmetric problems stress function g is not used. Hence x and M

can be simpli�ed as:

x =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

a1(Re
1)
2

b1(Re
1)
2

...
aN (Re
N)

2

bN (Re
N)
2

EuT1
EuT2

E(cos�� 1)
E sin�

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(2N+4)�1

(93)

A =

2
6666666666664

A1
1 B1

1 � � � A1
N

B1
N

1 0 x11 �x12
A2
1 B2

1 � � � A2
N

B2
N

1 0 x21 �x22
: :
Ap
1 Bp

1 � � � Ap
N

Bp
N

1 0 xp1 �xp2

E1
1 F 1

1 � � � E1
N

F 1
N

0 1 x12 x11
E2
1 F 2

1 � � � E2
N

F 2
N

0 1 x22 x21
: :
Ep
1 F p

1 � � � Ep
N

F p
N

0 1 xp2 xp1

3
7777777777775
M�(2N+4)

(94)

7.4 Anti-symmetric problems

For pure anti-symmetric problems f is not used. x and M can be simpli�ed
as:

x =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

c1(Re�1)
2

d1(Re�1)
2

...
cN (Re�N)

2

dN (Re�N)
2

EuT1
EuT2

E(cos�� 1)
E sin�

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(2N+4)�1

(95)

14

A =

2
6666666666664

C1
1 D1

1 � � � C1
N

D1
N

1 0 x11 �x12
C2
1 D2

1 � � � C2
N

D2
N

1 0 x21 �x22
: :
Cp
1 Dp

1 � � � Cp
N

Dp
N

1 0 xp1 �xp2

G1
1 H1

1 � � � G1
N

H1
N

0 1 x12 x11
G2
1 H2

1 � � � G2
N

H2
N

0 1 x22 x21
: :
Gp
1 Hp

1 � � � Gp
N

Hp
N

0 1 xp2 xp1

3
7777777777775
M�(2N+4)

(96)

8 Programs

There are a number of forward and inverse programs in the distribution. Shared
and/or dynamic executables can be built on a number of platforms. Shared
executables are given names ending in .sx . Dynamic executables are given
names ending in .dx .

8.1 Forward solvers

8.1.1 exact

Program exact solves the forward problem, i.e. calculating displacements and
stresses everywhere from the given series expansion coe�cients, or generating
the series expansion coe�cients at random. The main purpose of the program
is to generate validation test cases, i.e. displacement �elds for use with inverse
programs, and corresponding stress �elds.

The program takes the name of the settings �le as an input. This is a plain
text �le with exactly 13 lines. A minimum of 2 �elds per line are expected.

The �rst �eld is a character string with no spaces or tabs. This is the name
of the input parameter. The value of this string is not used in the program.
Hence any value can be assigned to the �rst �eld, to help the user give a useful
identi�er.

The second �eld is interpreted as a REAL , of a certain program speci�c
kind. The value of this �eld is used in the program.

Any other �elds on the line are ignored. These can be used to provide a
comment to better label the values in the second �eld.

An example settings �le is shown below.

c 70.0 half width, in mm

x1min 0.0 as a fraction of c

x1max 1.0 as a fraction of c

x2min -1.0 as a fraction of c

x2max 1.0 as a fraction of c

dx1 0.05 as a fraction of c

dx2 0.05 as a fraction of c

noise 0.0 noise magnitude, as in u = u * (1 + RND*noise)

angle 0.123 in degrees, rigid body rotation about origin

tran1 0.6 in mm, rigid body translation along 1

tran2 -0.4 in mm, rigid body translation along 2

15

young 2.0e5 Young's modulus

poisson 0.33 Poisson's ratio

The settings �le sets the elastic properties, the geometry of the problem, the
extent of the �eld where displacements and stresses are calculated, the spatial
sampling frequency within this �eld, the rigid body translation and rotation (to
simulate the rigid body motion in experiment) and the magnitude of random
noise to add to calculated displacements.

After reading the setting �le, the program will ask the user whether to
generate the coe�cients at random, or read from �le. If the user selects the
option to read from �le, then a �le name must be entered. This is a plain text
�le with one line per term in the series. Each line has 4 �elds separated by
spaces or tabs. Each �eld is a REAL number. The �rst �eld is read in as ai,
the second as bi, the third as ci and the �nal fourth �eld is read in as di. The
�rst line is term 1, the second line, if any, is term 2, etc. The number of lines
in the �le (terms) is not limited. The program will read the �le until the end.
An example coe�cients �le is shown below.

2.348133056E+00 4.096870272E+00 0.0e0 0.0e0

7.158751031E-01 4.758107668E-01 0.0e0 0.0e0

2.209624893E-01 1.262096797E-01 0.0e0 0.0e0

In this �le there are 4 �rst terms in the series expansion. This is a symmetric
loading, because all ci = di = 0.

References

[1] I. A. Razumovskii and A. L. Shterenlikht. Determining the locally-
nonuniform residual-stress �elds in plane parts by the sectioning method.
Journal of Machinery Manufacture and Reliability C/C of Problemy

Mashinostroeniia i Nadezhnosti Mashin, 4:40{5, 2000. Allerton Press, USA,
ISSN: 1052-6188.

[2] H. K. Kim, M. J. Pavier, and A. Shterenlikht. Measuring locally non-uniform
in-plane residual stress with straight cuts and dic. In Proc. 9th International

Conference on Advances in Experimental Mechanics, 3-5 September 2013,

Cardi�, Wales, UK. The British Society for Strain Measurements.

[3] H. K. Kim, M. J. Pavier, and A. Shterenlikht. Plasticity and stress het-
erogeneity in
uence on mechanical stress relaxation residual stress measure-
ments. In Proc. 9th European Conference on Residual Stresses, Troyes,

France, 7-10 July 2014.

[4] H. K. Kim, H. E. Coules, Pavier M. J., and A. Shterenlikht. Measurement
of highly non-uniform residual stress �elds with reduced plastic error. Exp.
Mech., 2015. DOI: 10.1007/s11340-015-0025-1.

[5] S. Timoshenko and J. N. Goodier. Theory of Elasticity. McGraw-Hill, 3
edition, 1970.

[6] R. Piessens, E. deDoncker Kapenga, C. Uberhuber, and D. Kahaner. Quad-
pack: a Subroutine Package for Automatic Integration, volume 1 of Series
in Computational Mathematics. Springer Verlag, 1983.

16

[7] J. L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems with

Paractical Applications. SIAM, 2012.

17

	Basics
	Plane stress, tangential disp. fields
	Integration limits along x1 and u10
	Integration limits along x2 and u20
	Full expressions for displacements
	Rigid body motion

	Stress
	Forward problem
	Units
	Integration limits and constants
	Inverse problem
	Displacement of the centre line (x2 = 0)
	Matrix form
	Symmetric problems
	Anti-symmetric problems

	Programs
	Forward solvers
	exact

